Home > ±³¼ö/¿¬±¸½Ç > ±¸¼º¿ø

À̵¿¿í / Lee, Dong Wook
  • Àü³²´ëÇб³ ¹ÙÀÌ¿À¿¡³ÊÁö°øÇаú ºÎ±³¼ö
  • ½Ä¹°½Ã½ºÅÛ»ý¹°ÇÐ
³ó4-114-1
1995-2000 : Çѵ¿´ëÇб³, »ý¹°½ÄÇ°°øÇкΠ(Çö »ý¸í°úÇкÎ), Çлç
2000-2002 : Çѵ¿´ëÇб³, »ý¸í°úÇаú, ¼®»ç
2002-2008 : Æ÷Ç×°ø°ú´ëÇб³, ºÐÀÚ»ý¸í°úÇкÎ, ¹Ú»ç (Áöµµ±³¼ö: ȲÀÎȯ)
2008. 02 ~ 2009. 06: ¹Ú»çÈÄ ¿¬±¸¿ø, Æ÷Ç×°ø°ú´ëÇб³, »ý¸í°úÇаú
2009. 07 ~ 2010. 07: ¹Ú»çÈÄ ¿¬±¸¿ø, Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, LA, CA, USA
2010. 09 ~ 2014. 06: ¹Ú»çÈÄ ¿¬±¸¿ø, Æ÷Ç×°ø°ú´ëÇб³, À¶ÇÕ»ý¸í°øÇкÎ
2014. 06 ~ 2019. 08: ¿¬±¸Á¶±³¼ö, Æ÷Ç×°ø°ú´ëÇб³, À¶ÇÕ»ý¸í°øÇкÎ
2019. 09 ~ 2022. 09: Á¶±³¼ö, Àü³²´ëÇб³, ¹ÙÀÌ¿À¿¡³ÊÁö°øÇаú
2022. 10 ~ ÇöÀç: ºÎ±³¼ö, Àü³²´ëÇб³, ¹ÙÀÌ¿À¿¡³ÊÁö°øÇаú
½Ä¹° ºÐÀÚ¼¼Æ÷»ý¹°ÇÐ, ¸· »ý¹°ÇÐ, ºÐÀÚ³ó¾÷ (molecular farming)

1) ½Ä¹°¼¼Æ÷ ¼Ò±â°ü (subcellular organelles) ¹ß´Þ ±âÀÛ

2) ½Ä¹° ¿±·Ïü ¹× ¹ÌÅäÄܵ帮¾Æ·ÎÀÇ ´Ü¹éÁú À̵¿ ¹× ¼ö¼Û ±âÀÛ

3) ´Ü¹éÁúÀÇ ¸· (membrane) Åë°ú ¹× ¸·À¸·ÎÀÇ »ðÀÔ ±âÀÛ

4) ¼¼Æ÷ Àç¼³°è (cellular reprogramming)À» ÅëÇÑ ½Ä¹° ¹ÙÀÌ¿À¸Å½º ÁõÁø

5) ½Ä¹°½Ã½ºÅÛÀ» ÀÌ¿ëÇÑ À¯¿ë ´Ü¹éÁú »ý»ê


1. Kim, D.B., Na, C., Hwang, I., and Lee, D.W. (2023) Understanding protein translocation across chloroplast membranes: Translocons and motor proteins. Journal of Integrative Plant Biology. 65: 408–416.

2. Zaikova, K., Jeong, J., Geem, K.R., Ku, K.M., Kim, J.S., and Lee, D.W. (2022) In planta production and characterization of full-length human adipose triglyceride lipase. Plant Biotechnology Reports. 16:793–797.

3. Kim, D.B., Lee, S.M., Geem, K.R., Kim, J., Kim, E.H., and Lee, D.W. (2022) In planta Production and Validation of Neuraminidase Derived from Genotype 4 Reassortant Eurasian Avian-like H1N1 Virus as a Vaccine Candidate. PLANTS. 11(21):2984.

4. Jeong, J., Moon, B., Hwang, I., and Lee, D.W. (2022) GREEN FLUORESCENT PROTEIN variants with enhanced folding are more efficiently imported into chloroplasts. Plant Physiology. 190(1):238-249.

5. Choi, Y.J., Zaikova, K., Yeom, S.J., Kim, Y.S., and Lee, D.W. (2022) Biogenesis and Lipase-Mediated Mobilization of Lipid Droplets in Plants. PLANTS. 11(9):1243.

6. Jeong, J., Hwang, I., and Lee, D.W. (2021) Functional Organization of Sequence Motifs in Diverse Transit Peptides of Chloroplast Proteins. Frontiers in Physiology. 12:795156.

7. Geem, K.R., Song, Y., Hwang, I., Bae, H.J., and Lee, D.W. (2021) Production of Gloeophyllum trabeum Endoglucanase Cel12A in Nicotiana benthamiana for Cellulose Degradation. Front Plant Sci. 11:64. 12:696199.

8. Lee D,W., and Hwang, I. (2021) Understanding the evolution of endosymbiotic organelles based on the targeting sequences of organellar proteins. New Phytologist. 230(3):924-930.

9. Razzak, M.A., Lee, D.W., Lee, J., and Hwang, I. (2020) Overexpression and purification of Gracilariopsis chorda carbonic anhydrase (GcCA¥á3) in Nicotiana benthamiana, and its immobilization and use in CO2 hydration reactions. Front Plant Sci. 11:563721.

10. Kumari, M., Lee, J., Lee, D.W., and Hwang, I. (2020) High-level production in a plant system of a thermostable carbonic anhydrase and its immobilization on microcrystalline cellulose beads for CO2 capture. Plant Cell Reports. 39:1317-1329.

11. Lee, D.W., and Hwang, I. (2020) A Fight between Plants and Pathogens for the Control of Chloroplasts. Cell Host & Microbe. 28(3):351-352.

12. Lee, D.W., and Hwang, I. (2020) Liquid-liquid phase transition as a new means in protein targeting in chloroplasts. Molecular Plant. 13(5):679-681.

13. Lee, D.W., Lee, S., Min, C.K., Park, C., Kim, J.M., Hwang, C.S., Park, S.K., Cho, N.H., and Hwang, I. (2020) Cross-Species Functional Conservation and Possible Origin of the N-Terminal Specificity Domain of Mitochondrial Presequences. Front Plant Sci. 13;11:64.

14. Islam, M.R., Son, N., Lee, J., Lee, D.W., Sohn, E.J., and Hwang, I. (2019) Production of bacteriophage-encoded endolysin, LysP11, in Nicotiana benthamiana and its activity as a potent antimicrobial agent against Erysipelothrix rhusiopathiae. Plant Cell Reports, 38(12):1485-1499.

15. Lee, D.W., and Hwang, I. (2019) Protein import into chloroplasts via the Tic40-dependent and -independent pathways depends on the amino acid composition of the transit peptide. Biochem Biophys Res Commun. 518(1):66-71.